Supervised Probabilistic Segmentation of Pulmonary Nodules in CT Scans

نویسنده

  • Bram van Ginneken
چکیده

An automatic method for lung nodule segmentation from computed tomography (CT) data is presented that is different from previous work in several respects. Firstly, it is supervised; it learns how to obtain a reliable segmentation from examples in a training phase. Secondly, the method provides a soft, or probabilistic segmentation, thus taking into account the uncertainty inherent in this segmentation task. The method is trained and tested on a public data set of 23 nodules for which soft labelings are available. The new method is shown to outperform a previously published conventional method. By merely changing the training data, non-solid nodules can also be segmented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminative Localization in CNNs for Weakly-Supervised Segmentation of Pulmonary Nodules

Automated detection and segmentation of pulmonary nodules on lung computed tomography (CT) scans can facilitate early lung cancer diagnosis. Existing supervised approaches for automated nodule segmentation on CT scans require voxel-based annotations for training, which are labor- and time-consuming to obtain. In this work, we propose a weakly-supervised method that generates accurate voxel-leve...

متن کامل

A New Computer-Aided Detection System for Pulmonary Nodule in CT Scan Images of Cancerous Patients

Introduction: In the lung cancers, a computer-aided detection system that is capable of detecting very small glands in high volume of CT images is very useful.This study provided a novelsystem for detection of pulmonary nodules in CT image. Methods: In a case-control study, CT scans of the chest of 20 patients referred to Yazd Social Security Hospital were examined. In the two-dimensional and ...

متن کامل

Lung Nodule Detection in CT Scans

In this paper we describe a computer-aided diagnosis (CAD) system for automated detection of pulmonary nodules in computed-tomography (CT) images. After extracting the pulmonary parenchyma using a combination of image processing techniques, a region growing method is applied to detect nodules based on 3D geometric features. We applied the CAD system to CT scans collected in a screening program ...

متن کامل

Automated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy

Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...

متن کامل

Combining Generative and Discriminative Models for Semantic Segmentation of CT Scans via Active Learning

This paper presents a new supervised learning framework for the efficient recognition and segmentation of anatomical structures in 3D computed tomography (CT), with as little training data as possible. Training supervised classifiers to recognize organs within CT scans requires a large number of manually delineated exemplar 3D images, which are very expensive to obtain. In this study, we borrow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 9 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2006